Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Signal ; 16(809): eadg5171, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37906628

RESUMEN

The scaffolding protein CARD11 is a critical mediator of antigen receptor signaling in lymphocytes. Hypomorphic (partial loss-of-function) mutations in CARD11 are associated with the development of severe atopic dermatitis, in which T cell receptor signaling is reduced and helper T cell differentiation is skewed to an allergy-associated type 2 phenotype. Here, we found that the docking protein DOK3 plays a key role in the pathogenesis of atopic dermatitis by suppressing CARD11 activity. DOK3 interacted with CARD11 and decreased its phosphorylation in T cells by recruiting the catalytic subunit of protein phosphatase 4, thereby dampening downstream signaling. Knocking out Dok3 enhanced the production of the cytokine IFN-γ by T cells, which conferred protection against experimental atopic dermatitis-like skin inflammation in mice. The expression of DOK3 was increased in T cells isolated from patients with atopic dermatitis and inversely correlated with IFNG expression. A subset of hypomorphic CARD11 variants found in patients with atopic dermatitis bound more strongly than wild-type CARD11 to DOK3. Our findings suggest that the strength of the interaction of DOK3 with CARD11 may predispose individuals to developing atopic dermatitis.


Asunto(s)
Dermatitis Atópica , Linfocitos T , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras de Señalización CARD/genética , Dermatitis Atópica/genética , Dermatitis Atópica/metabolismo , Guanilato Ciclasa/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Transducción de Señal/genética , Linfocitos T/metabolismo
2.
Pharmaceutics ; 15(7)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37513967

RESUMEN

Invasive fungal disease is an emerging and serious public health threat globally. The expanding population of susceptible individuals, together with the rapid emergence of multidrug-resistant fungi pathogens, call for the development of novel therapeutic strategies beyond the limited repertoire of licensed antifungal drugs. Card9 is a critical signaling molecule involved in antifungal defense; we have previously identified Dok3 to be a key negative regulator of Card9 activity in neutrophils. In this study, we identified two synthetic peptides derived from the coiled-coil domain of Card9, which can specifically block Dok3-Card9 binding. We showed that these peptides are cell-permeable, non-toxic, and can enhance antifungal cytokine production and the phagocytosis of human neutrophils upon fungal infection. Collectively, these data provide a proof of concept that disrupting the Dok3-Card9 interaction can boost the antifungal effector functions of neutrophils; they further suggest the potential utility of these peptide inhibitors as an immune-based therapeutic to fight fungal infection.

3.
Pharmaceutics ; 15(5)2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37242732

RESUMEN

Mesenchymal stem/stromal cell (MSC) exosomes have been shown to alleviate immune dysfunction and inflammation in preclinical animal models. This therapeutic effect is attributed, in part, to their ability to promote the polarization of anti-inflammatory M2-like macrophages. One polarization mechanism has been shown to involve the activation of the MyD88-mediated toll-like receptor (TLR) signaling pathway by the presence of extra domain A-fibronectin (EDA-FN) within the MSC exosomes. Here, we uncovered an additional mechanism where MSC exosomes mediate M2-like macrophage polarization through exosomal CD73 activity. Specifically, we observed that polarization of M2-like macrophages by MSC exosomes was abolished in the presence of inhibitors of CD73 activity, adenosine receptors A2A and A2B, and AKT/ERK phosphorylation. These findings suggest that MSC exosomes promote M2-like macrophage polarization by catalyzing the production of adenosine, which then binds to adenosine receptors A2A and A2B to activate AKT/ERK-dependent signaling pathways. Thus, CD73 represents an additional critical attribute of MSC exosomes in mediating M2-like macrophage polarization. These findings have implications for predicting the immunomodulatory potency of MSC exosome preparations.

4.
Adv Drug Deliv Rev ; 196: 114775, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36924530

RESUMEN

Invasive fungal infection is an under recognized and emerging global health threat. Recently, the World Health Organization (WHO) released the first ever list of health-threatening fungi to guide research and public health interventions to strengthen global response to fungi infections and antifungal resistance. Currently, antifungal drugs only demonstrate partial success in improving prognosis of infected patients, and this is compounded by the rapid evolution of drug resistance among fungi species. The increased prevalence of fungal infections in individuals with underlying immunological deficiencies reflects the importance of an intact host immune system in controlling mycoses, and further highlights immunomodulation as a potential new avenue for the treatment of disseminated fungal diseases. In this review, we will summarize how host innate immune cells sense invading fungi through their pattern recognition receptors, and subsequently initiate a series of effector mechanisms and adaptive immune responses to mediate fungal clearance. In addition, we will discuss emerging preclinical and clinical data on antifungal immunotherapies and fungal vaccines which can potentially expand our antifungal armamentarium in future.


Asunto(s)
Vacunas Fúngicas , Micosis , Humanos , Antifúngicos/uso terapéutico , Micosis/tratamiento farmacológico , Receptores de Reconocimiento de Patrones , Inmunoterapia , Inmunidad Innata
5.
Front Immunol ; 13: 996637, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36172386

RESUMEN

Increased neutrophils and elevated level of circulating calprotectin are hallmarks of severe COVID-19 and they contribute to the dysregulated immune responses and cytokine storm in susceptible patients. However, the precise mechanism controlling calprotectin production during SARS-CoV-2 infection remains elusive. In this study, we showed that Dok3 adaptor restrains calprotectin production by neutrophils in response to SARS-CoV-2 spike (S) protein engagement of TLR4. Dok3 recruits SHP-2 to mediate the de-phosphorylation of MyD88 at Y257, thereby attenuating downstream JAK2-STAT3 signaling and calprotectin production. Blocking of TLR4, JAK2 and STAT3 signaling could prevent excessive production of calprotectin by Dok3-/- neutrophils, revealing new targets for potential COVID-19 therapy. As S protein from SARS-CoV-2 Delta and Omicron variants can activate TLR4-driven calprotectin production in Dok3-/- neutrophils, our study suggests that targeting calprotectin production may be an effective strategy to combat severe COVID-19 manifestations associated with these emerging variants.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , COVID-19 , Glicoproteína de la Espiga del Coronavirus , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Humanos , Complejo de Antígeno L1 de Leucocito , Factor 88 de Diferenciación Mieloide/metabolismo , Neutrófilos/metabolismo , SARS-CoV-2 , Receptor Toll-Like 4/metabolismo
6.
Cytotherapy ; 24(7): 711-719, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35177337

RESUMEN

Complements and neutrophils are two key players of the innate immune system that are widely implicated as drivers of severe COVID-19 pathogenesis, as evident by the direct correlation of respiratory failure and mortality with elevated levels of terminal complement complex C5b-9 and neutrophils. In this study, we identified a feed-forward loop between complements and neutrophils that could amplify and perpetuate the cytokine storm seen in severe SARS-CoV-2-infected patients. We observed for the first time that the terminal complement activation complex C5b-9 directly triggered neutrophil extracellular trap (NET) release and interleukin (IL)-17 production by neutrophils. This is also the first report that the production of NETs and IL-17 induced by C5b-9 assembly on neutrophils could be abrogated by mesenchymal stem cell (MSC) exosomes. Neutralizing anti-CD59 antibodies abolished this abrogation. Based on our findings, we hypothesize that MSC exosomes could alleviate the immune dysregulation in acute respiratory failure, such as that observed in severe COVID-19 patients, by inhibiting complement activation through exosomal CD59, thereby disrupting the feed-forward loop between complements and neutrophils to inhibit the amplification and perpetuation of inflammation during SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Exosomas , Células Madre Mesenquimatosas , COVID-19/terapia , Complejo de Ataque a Membrana del Sistema Complemento , Humanos , Neutrófilos , SARS-CoV-2
7.
Rheumatol Immunol Res ; 3(3): 120-127, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36788971

RESUMEN

Rheumatic diseases, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV), are a group of auto-inflammatory disorders associated with substantial morbidity and mortality. One unifying feature of these diseases is the presence of abnormal neutrophils exhibiting dysregulated neutrophil extracellular trap (NET) release, reactive oxygen species (ROS) production, degranulation, and pro-inflammatory cytokines secretion. Moreover, the release of autoantigens associated with NETs promotes the generation of autoantibodies and a breakdown of self-tolerance, thereby perpetuating inflammation and tissue injury in these patients. In recent years, targeted therapies directed at neutrophilic effector functions have shown promising results in the management of rheumatic diseases. In this review, we will highlight the emerging roles of neutrophils in the onset and progression of rheumatic diseases, and further discuss current and future therapeutic approaches targeting the pathogenic functions of neutrophils, which can modulate inflammation and hence improve patients' survival and quality of life.

8.
Cell Death Dis ; 12(11): 1054, 2021 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-34743196

RESUMEN

How pathogenesis of inflammatory bowel disease (IBD) depends on the complex interplay of host genetics, microbiome and the immune system is not fully understood. Here, we showed that Downstream of Kinase 3 (DOK3), an adapter protein involved in immune signaling, confers protection of mice from dextran sodium sulfate (DSS)-induced colitis. DOK3-deficiency promotes gut microbial dysbiosis and enhanced colitis susceptibility, which can be reversed by the transfer of normal microbiota from wild-type mice. Mechanistically, DOK3 exerts its protective effect by suppressing JAK2/STAT3 signaling in colonic neutrophils to limit their S100a8/9 production, thereby maintaining gut microbial ecology and colon homeostasis. Hence, our findings reveal that the immune system and microbiome function in a feed-forward manner, whereby DOK3 maintains colonic neutrophils in a quiescent state to establish a gut microbiome essential for intestinal homeostasis and protection from IBD.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Homeostasis , Intestinos/metabolismo , Janus Quinasa 2/metabolismo , Neutrófilos/metabolismo , Factor de Transcripción STAT3/metabolismo , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Animales , Colitis/genética , Colitis/patología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Disbiosis/complicaciones , Disbiosis/microbiología , Regulación de la Expresión Génica , Mucosa Intestinal/patología , Intestinos/microbiología , Intestinos/patología , Ratones , Microbiota , Transducción de Señal
9.
Nat Commun ; 12(1): 1914, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33772013

RESUMEN

Innate immunity is important for host defense by eliciting rapid anti-viral responses and bridging adaptive immunity. Here, we show that endogenous lipids released from virus-infected host cells activate lung γδ T cells to produce interleukin 17 A (IL-17A) for early protection against H1N1 influenza infection. During infection, the lung γδ T cell pool is constantly supplemented by thymic output, with recent emigrants infiltrating into the lung parenchyma and airway to acquire tissue-resident feature. Single-cell studies identify IL-17A-producing γδ T (Tγδ17) cells with a phenotype of TCRγδhiCD3hiAQP3hiCXCR6hi in both infected mice and patients with pneumonia. Mechanistically, host cell-released lipids during viral infection are presented by lung infiltrating CD1d+ B-1a cells to activate IL-17A production in γδ T cells via γδTCR-mediated IRF4-dependent transcription. Reduced IL-17A production in γδ T cells is detected in mice either lacking B-1a cells or with ablated CD1d in B cells. Our findings identify a local host-immune crosstalk and define important cellular and molecular mediators for early innate defense against lung viral infection.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Lípidos/inmunología , Infecciones por Orthomyxoviridae/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Animales , Antígenos CD1d/inmunología , Antígenos CD1d/metabolismo , Femenino , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata/inmunología , Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Humana/metabolismo , Gripe Humana/virología , Factores Reguladores del Interferón/inmunología , Factores Reguladores del Interferón/metabolismo , Interleucina-17/inmunología , Interleucina-17/metabolismo , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/virología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/virología , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo
10.
Front Immunol ; 11: 566192, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33133079

RESUMEN

Downstream of kinase (Dok) 3 is a member of the Dok family of adaptor proteins known to regulate signaling pathways downstream of various immunoreceptors. As Dok-3 lacks intrinsic catalytic activity, it functions primarily as a molecular scaffold to facilitate the nucleation of protein complexes in a regulated manner and hence, achieve specificity in directing signaling cascades. Since its discovery, considerable progress has been made toward defining the role of Dok-3 in limiting B cell-receptor signaling. Nonetheless, Dok-3 has since been implicated in the signaling of Toll-like and C-type lectin receptors. Emerging data further demonstrate that Dok-3 can act both as an activator and inhibitor, in lymphoid and non-lymphoid cell types, suggesting Dok-3 involvement in a plethora of signal transduction pathways. In this review, we will focus on the structure and expression profile of Dok-3 and highlight its role during signal transduction in B cells, innate cells as well as in bone and lung tissues.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Proteínas Adaptadoras Transductoras de Señales/química , Animales , Humanos , Transducción de Señal
11.
J Clin Invest ; 129(7): 2717-2729, 2019 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-31180338

RESUMEN

Invasive fungal infection is a serious health threat with high morbidity and mortality. Current antifungal drugs only demonstrate partial success in improving prognosis. Furthermore, mechanisms regulating host defense against fungal pathogens remain elusive. Here, we report that the downstream of kinase 3 (Dok3) adaptor negatively regulates antifungal immunity in neutrophils. Our data revealed that Dok3 deficiency increased phagocytosis, proinflammatory cytokine production, and netosis in neutrophils, thereby enhancing mutant mouse survival against systemic infection with a lethal dose of the pathogenic fungus Candida albicans. Biochemically, Dok3 recruited protein phosphatase 1 (PP1) to dephosphorylate Card9, an essential player in innate antifungal defense, to dampen downstream NF-κB and JNK activation and immune responses. Thus, Dok3 suppresses Card9 signaling, and disrupting Dok3-Card9 interaction or inhibiting PP1 activity represents therapeutic opportunities to develop drugs to combat candidaemia.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Proteínas Adaptadoras de Señalización CARD/inmunología , Candida albicans/inmunología , Candidiasis/inmunología , Neutrófilos/inmunología , Proteína Fosfatasa 1/inmunología , Transducción de Señal/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas Adaptadoras de Señalización CARD/genética , Candidiasis/genética , Candidiasis/patología , Ratones , Ratones Noqueados , Neutrófilos/patología , Proteína Fosfatasa 1/genética , Transducción de Señal/genética
12.
iScience ; 10: 23-39, 2018 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-30496973

RESUMEN

Ezh2, a well-established epigenetic repressor, can down-regulate leukocyte inflammatory responses, but its role in cutaneous health remains elusive. Here we demonstrate that Ezh2 controls cutaneous tolerance by regulating Langerhans cell (LC) transmigration across the epidermal basement membrane directly via Talin1 methylation. Ezh2 deficiency impaired disassembly of adhesion structures in LCs, leading to their defective integrin-dependent emigration from the epidermis and failure in tolerance induction. Moreover, mobilization of Ezh2-deficient Langerin- dermal dendritic cells (dDCs) via high-dose treatment with a weak allergen restored tolerance, which is associated with an increased tolerogenic potential of Langerin- dDCs likely due to epigenetic de-repression of Aldh in the absence of Ezh2. Our data reveal novel roles for Ezh2 in governing LC- and dDC-mediated host protection against cutaneous allergen via distinct mechanisms.

13.
Sci Rep ; 7: 46485, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28429725

RESUMEN

Epidemiological studies have indicated increased risk for breast cancer within 10 years of childbirth. Acute inflammation during mammary involution has been suggested to promote this parity-associated breast cancer. We report here that estrogen exacerbates mammary inflammation during involution. Microarray analysis shows that estrogen induces an extensive proinflammatory gene signature in the involuting mammary tissue. This is associated with estrogen-induced neutrophil infiltration. Furthermore, estrogen induces the expression of protumoral cytokines/chemokines, COX-2 and tissue-remodeling enzymes in isolated mammary neutrophils and systemic neutrophil depletion abolished estrogen-induced expression of these genes in mammary tissue. More interestingly, neutrophil depletion diminished estrogen-induced growth of ERα-negative mammary tumor 4T1 in Balb/c mice. These findings highlight a novel aspect of estrogen action that reprograms the activity of neutrophils to create a pro-tumoral microenvironment during mammary involution. This effect on the microenvironment would conceivably aggravate its known neoplastic effect on mammary epithelial cells.


Asunto(s)
Reprogramación Celular , Estrógenos/metabolismo , Glándulas Mamarias Animales/metabolismo , Neoplasias Mamarias Experimentales/metabolismo , Neutrófilos/metabolismo , Microambiente Tumoral , Animales , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Glándulas Mamarias Animales/patología , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos BALB C , Proteínas de Neoplasias/biosíntesis , Neutrófilos/patología
14.
Oncotarget ; 7(24): 37347-37360, 2016 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-26993608

RESUMEN

Leukocytes undergo frequent phenotypic changes and rapidly infiltrate peripheral and lymphoid tissues in order to carry out immune responses. The recruitment of circulating leukocytes into inflamed tissues depends on integrin-mediated tethering and rolling of these cells on the vascular endothelium, followed by transmigration into the tissues. This dynamic process of migration requires the coordination of large numbers of cytosolic and transmembrane proteins whose functional activities are typically regulated by post-translational modifications (PTMs). Our recent studies have shown that the lysine methyltransferase, Ezh2, critically regulates integrin signalling and governs the adhesion dynamics of leukocytes via direct methylation of talin, a key molecule that controls these processes by linking integrins to the actin cytoskeleton. In this review, we will discuss the various modes of leukocyte migration and examine how PTMs of cytoskeletal/adhesion associated proteins play fundamental roles in the dynamic regulation of leukocyte migration. Furthermore, we will discuss molecular details of the adhesion dynamics controlled by Ezh2-mediated talin methylation and the potential implications of this novel regulatory mechanism for leukocyte migration, immune responses, and pathogenic processes, such as allergic contact dermatitis and tumorigenesis.


Asunto(s)
Adhesión Celular/fisiología , Movimiento Celular/fisiología , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Leucocitos/fisiología , Procesamiento Proteico-Postraduccional , Talina/metabolismo , Inmunidad Adaptativa/fisiología , Carcinogénesis/patología , Células Dendríticas/fisiología , Dermatitis Alérgica por Contacto/fisiopatología , Endotelio Vascular , Humanos , Inmunidad Innata/fisiología , Integrinas/metabolismo , Metilación , Transducción de Señal/fisiología
15.
Nat Immunol ; 16(5): 505-16, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25751747

RESUMEN

A cytosolic role for the histone methyltransferase Ezh2 in regulating lymphocyte activation has been suggested, but the molecular mechanisms underpinning this extranuclear function have remained unclear. Here we found that Ezh2 regulated the integrin signaling and adhesion dynamics of neutrophils and dendritic cells (DCs). Ezh2 deficiency impaired the integrin-dependent transendothelial migration of innate leukocytes and restricted disease progression in an animal model of multiple sclerosis. Direct methylation of talin, a key regulatory molecule in cell migration, by Ezh2 disrupted the binding of talin to F-actin and thereby promoted the turnover of adhesion structures. This regulatory effect was abolished by targeted disruption of the interactions of Ezh2 with the cytoskeletal-reorganization effector Vav1. Our studies reveal an unforeseen extranuclear function for Ezh2 in regulating adhesion dynamics, with implications for leukocyte migration, immune responses and potentially pathogenic processes.


Asunto(s)
Núcleo Celular/metabolismo , Células Dendríticas/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Esclerosis Múltiple/inmunología , Neutrófilos/inmunología , Complejo Represivo Polycomb 2/metabolismo , Talina/metabolismo , Actinas/metabolismo , Animales , Adhesión Celular/genética , Movimiento Celular , Células Cultivadas , Modelos Animales de Enfermedad , Proteína Potenciadora del Homólogo Zeste 2 , Humanos , Activación de Linfocitos/genética , Metilación , Ratones , Ratones Noqueados , Complejo Represivo Polycomb 2/genética , Unión Proteica/genética , Proteínas Proto-Oncogénicas c-vav/metabolismo , Talina/genética , Migración Transendotelial y Transepitelial/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...